ФОТОМЕТРИЯ - определение. Что такое ФОТОМЕТРИЯ
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое ФОТОМЕТРИЯ - определение

Теория светового поля
Найдено результатов: 34
Фотометрия         
(îò Ôîòî... è ...ìåòðèÿ (Ñì. ...метрия)

раздел физической оптики, в котором рассматриваются энергетические характеристики оптического излучения (См. Оптическое излучение), испускаемого источниками, распространяющегося в различных средах и взаимодействующего с телами. При этом энергия электромагнитных колебаний оптического диапазона усредняется по малым интервалам времени, которые, однако, значительно превышают период таких колебаний. Ф. охватывает как экспериментальные методы и средства измерений фотометрических величин (См. Фотометрические величины), так и относящиеся к этим величинам теоретические положения и расчёты.

Основным энергетическим понятием Ф. является Поток излучения Фе, имеющий физический смысл средней мощности, переносимой электромагнитным излучением. Пространственное распределение Фе описывают Энергетические фотометрические величины, производные от потока излучения по площади и (или) телесному углу (См. Телесный угол). В фотометрии импульсной (См. Фотометрия импульсная) применяются также интегральные по времени фотометрические величины. В узком смысле Ф. иногда называют измерения и расчёт величин, относящихся к наиболее употребительной системе редуцированных фотометрических величин (См. Редуцированные фотометрические величины) - системе световых величин (См. Световые величины) (освещённости (См. Освещённость), силы света (См. Сила света), яркости (См. Яркость), освечивания (См. Освечивание), светимости (См. Светимость) и пр.; соответствующие энергетические фотометрические величины - энергетическая освещённость, энергетическая сила света, энергетическая яркость и т.д.). Световые величины - это фотометрические величины, редуцированные в соответствии со спектральной чувствительностью (См. Спектральная чувствительность) т. н. среднего светлоадаптированного человеческого глаза (важнейшего для деятельности человека приёмника света (См. Приёмники света); см. Адаптация физиологическая; об условиях, при которых получают характеристики среднего глаза как приёмника, см. ст. Световые величины). Применяются и др. системы редуцированных (по отношению к др. приёмникам) фотометрических величин: эритемные, бактерицидные, фотосинтетические. Изучение зависимостей фотометрических величин от длины волны излучения и спектральных плотностей (См. Спектральная плотность) энергетических величин составляет предмет спектрофотометрии (См. Спектрофотометрия) и спектрорадиометрии. Методы Ф. широко применяются в астрономии для исследования космических источников излучения в различных диапазонах спектра излучения (см. Астрофотометрия, Показатель цвета). Сведение Ф. лишь к измерениям световых величин ошибочно.

Фундаментальный для Ф. закон Е = I/l2, согласно которому освещённость Е изменяется обратно пропорционально квадрату расстояния l от точечного источника с силой света I был сформулирован И. Кеплером в 1604. Однако основоположником экспериментальной Ф. следует считать П. Бугера, который опубликовал в 1729 описание визуального метода количественного сравнения источников света - установления (путём изменения расстояний до источников) равенства освещённостей соседних поверхностей с использованием в качестве прибора глаза. Методы визуальной Ф. применяются в отдельных случаях до настоящего времени (2-я половина 20 в.) и в результате работ сов. учёных, которые ввели понятие т. н. эквивалентной яркости, распространены на область малых яркостей. В зависимости от используемых методов измерения фотометрических величин Ф. условно делят на визуальную, фотографическую, фотоэлектрическую, фотохимическую и так далее.

Начатое И. Ламбертом (1760) развитие теоретических методов Ф. нашло обобщённое выражение в теории светового поля (См. Световое поле), доведённой до стройной системы сов. учёным А. А. Гершуном (30-е гг. 20 в.). Современная теоретическая Ф. распространена на Мутные среды. Теоретическая Ф. основывается на соотношении dФе = LedG, выражающем в дифференциальной форме закон квадратов расстояний; здесь dФе - дифференциал потока излучения элементарного пучка лучей, мерой множества которых (см. Мера множества) является дифференциал dG фактора геометрического (См. Фактор геометрический), Le - энергетическая яркость излучения. Фотометрические свойства веществ и тел характеризуются Пропускания коэффициентами τ, Отражения коэффициентами ρ и Поглощения коэффициентами α, которые для одного и того же тела связаны очевидным соотношением τ + ρ + α = 1. Ослабление потока излучения узконаправленного пучка при прохождении через вещество описывается Бугера - Ламберта - Бера законом (См. Бугера - Ламберта - Бера закон).

Экспериментальные методы Ф. основаны на абсолютных и относительных измерениях потока излучения различными селективными и неселективными приёмниками излучения (т. е. приёмниками, реакция которых зависит или не зависит от длины волны излучения). Для определения размерных фотометрических величин применяют либо Фотометры с непосредственным сравнением неизвестного и известного потоков, либо фотометры, предварительно градуированные в соответствующих единицах измерения энергетических или редуцированных фотометрических величин. В частности, для передачи значений световых величин обычно используют сличаемые с государственными световыми эталонами (См. Световые эталоны) образцовые и рабочие светоизмерительные лампы - источники с известными фотометрическими характеристиками. Ф. лазерного излучения (См. Лазерное излучение) в основном построена по принципу использования образцовых и рабочих спектрально неселективных приёмников излучения, сличаемых с государственными эталонами мощности и энергии когерентного излучения Лазеров. Измерение безразмерных величин τ и ρ выполняется фотометрами с применением относительных методов, путём регистрации отношения реакций линейного приемника излучения на соответствующие потоки излучения. Применяется также уравнивание реакций линейного или нелинейного приёмника излучения изменением по определённому закону в известное число раз сравниваемых потоков излучения.

Теоретические и экспериментальные методы Ф. находят применение в светотехнике (См. Светотехника) и технике сигнализации, в астрономии и астрофизике, при расчёте переноса излучения в плазме (См. Плазма) газоразрядных источников света и звёзд, при химическом анализе веществ, в пирометрии (См. Пирометрия), при расчётах Теплообмена излучением и во многих др. областях науки и производства.

Лит.: Бугер П., Оптический трактат о градации света, пер. с франц., М., 1950; Гершун А. А., Избр. труды по фотометрии и светотехнике, М., 1958; Мешков В. В., Основы светотехники, ч. 1-2, М. - Л., 1957-61; Тиходеев П. М., Световые измерения в светотехнике. (Фотометрия), 2 изд., М. - Л., 1962; Волькенштейн А. А., Визуальная фотометрия малых яркостей, М. - Л., 1965; Сапожников Р. А., Теоретическая фотометрия, 2 изд., Л., 1967; Гуревич М. М., Введение в фотометрию, Л., 1968.

А. С. Дойников.

ФОТОМЕТРИЯ         
раздел прикладной физики, занимающийся измерениями света. С точки зрения фотометрии, свет - это излучение, способное вызывать ощущение яркости при воздействии на человеческий глаз. Такое ощущение вызывает излучение с длинами волн от 0,38 до 0,78 мкм, причем самым ярким представляется излучение с длиной волны ок. 0,555 мкм (желто-зеленого цвета). Поскольку чувствительность глаза к разным длинам волн у людей неодинакова, в фотометрии принят ряд условностей. В 1931 Международная комиссия по освещению (МКО) ввела понятие "стандартного наблюдателя" как некоего среднего для людей с нормальным восприятием. Этот эталон МКО - не что иное, как таблица значений относительной световой эффективности излучения с длинами волн в диапазоне от 0,380 до 0,780 мкм через каждые 0,001 мкм. На рис. 1 представлен график, построенный по данным этой таблицы, причем на нем указаны интервалы длин волн, соответствующие цветам солнечного спектра. Яркость, измеренная в соответствии с эталоном МКО, называется фотометрической яркостью или просто яркостью.
Фотометрические величины. Поток световой энергии измеряется в люменах. Определить световой поток в 1 лм невозможно, не обращаясь к светящимся телам, и основной мерой света долгое время была "свеча", которая считалась единицей силы света. Настоящие свечи уже более века не используются в качестве меры света, так как с 1862 стала применяться специальная масляная лампа, а с 1877 - лампа, в которой сжигался пентан. В 1899 в качестве единицы силы ответа была принята "международная свеча", которая воспроизводилась с помощью поверяемых электрических ламп накаливания. В 1979 была принята несколько отличающаяся от нее международная единица, названная канделой (кд). Кандела равна силе света в данном направлении источника, испускающего монохроматическое излучение частоты 540?1012 Гц (. = 555 нм), энергетическая сила светового излучения которого в этом направлении составляет 1/683 Вт/ср.
Чтобы дать определение люмена, рассмотрим точечный источник с силой света 1 кд во всех направлениях. Такой источник испускает полный световой поток, равный 4. лм. Если источник с силой света 1 кд освещает обращенную к нему небольшую пластинку, находящуюся на расстоянии 1 м, то освещенность поверхности этой пластинки равна 1 лм/м2, т.е. одному люксу.
Протяженный источник света или освещенный предмет характеризуется определенной яркостью (фотометрической яркостью). Если сила света, испускаемого 1 м2 такой поверхности в данном направлении, равна 1 кд, то ее яркость в этом направлении равна 1 кд/м2. (Яркость большинства тел и источников света в разных направлениях неодинакова.)
Виды фотометрических измерений. Основные виды фотометрических измерений таковы: 1) сравнение силы света источников; 2) измерение полного потока от источника света; 3) измерение освещенности в заданной плоскости; 4) измерение яркости в заданном направлении; 5) измерение доли света, пропускаемой частично прозрачными объектами; 6) измерение доли света, отражаемой объектами.
См. также:
фотометрия         
ж.
Раздел оптики, занимающийся измерением световых величин.
фотометрия         
ФОТОМ'ЕТРИЯ, фотометрии, мн. нет, ·жен. (от ·греч. phos - свет и metreo - измеряю).
1. Измерение силы света; Отдел оптики, занимающийся измерением силы света, яркости источников света (физ.).
2. Отдел астрономии, занимающийся определением яркости звезд (астр.).
ФОТОМЕТРИЯ         
и, мн. нет, ж. опт.
Раздел оптики, занимающийся измерением световых величин (освещенности, яркости, силы света, светового потока) и энергетических характеристик электромагнитного излучения. Фотометрический - относящийся к фотометрии.
ФОТОМЕТРИЯ         
(от фото ... и ...метрия),..1) совокупность методов измерения энергетических характеристик электромагнитного излучения и световых величин: освещенности, силы света, светового потока, яркости и др...2) Измерение интенсивности излучений и потоков заряженных частиц по величине почернения, вызываемого ими в светочувствительном слое.
Фотометрия         
Фотометрия (, родительный падеж  — свет и  — измеряю) — общая для всех разделов прикладной оптики научная дисциплина, на основании которой производятся количественные измерения энергетических характеристик поля излучения.
Фотометрическая система UBV         
Система UBV (система Джонсона или система Джонсона — Моргана) — наиболее широко используемая широкополосная фотометрическая система. Разработана в 1950-х годах американскими астрономами Гарольдом Л.
Фотометрия пламенная         
  • железа]]
  • Спектр излучения [[водород]]а

один из видов эмиссионного спектрального анализа (См. Спектральный анализ). Применяется главным образом для количественного определения в растворах атомов многих металлов и редкоземельных элементов по их спектральным линиям или полосам. Источником возбуждения спектров является пламя светильного газа, водорода, ацетилена или дициана. Анализируемый раствор инжектируется в пламя в виде аэрозоля в токе кислорода или воздуха. Наиболее распространено водород-кислородное пламя, характеризующееся достаточно высокой температурой (2900 К), малой интенсивностью собственного излучения и отсутствием в пламени твёрдых частиц при неполном сгорании.

Определяемое излучение выделяется узкополосным фильтром или Монохроматором, в котором в качестве диспергирующего элемента применяется призма или дифракционная решётка. Благодаря сравнительной простоте спектров пламени и высокой стабильности излучения пламени измерение интенсивностей спектральных линий производится почти исключительно фотоэлектрическим способом. Приёмником излучения служит фотоэлемент или фотоэлектронный умножитель, а регистрирующим прибором - гальванометр или самописец. Регистрация спектральных линий или полос на самописце обычно проводится методом сканирования, полученная запись выражает зависимость интенсивности излучения от длины волны. Мерой концентрации исследуемого элемента служит интенсивность его спектральной линии. Зависимость интенсивности линий от концентрации устанавливается по результатам фотометрирования спектров эталонных растворов. Преимущества Ф. п. - точность, скорость и высокая чувствительность (для щелочных элементов 0,01 мкг/мл, для щёлочноземельных - 0,1 мкг/мл). Для анализа по методу Ф. п. применяют спектрофотометры с автоматической регистрацией спектров и выдачей результатов.

Лит. см. при ст. Спектральный анализ.

ФОТОМЕТР         
  • [[Люксметр]]
  • Фотометр с кюветами
(от фото ... и ...метр), прибор для измерения фотометрических (в т. ч. световых) величин: освещенности, силы света, светового потока, яркости, коэффициент пропускания и коэффициент отражения, а также величин, характеризующих ультрафиолетовые и инфракрасные излучения.

Википедия

Фотометрия

Фотом етрия (др.-греч. φῶς, родительный падеж φωτός — свет и μετρέω — измеряю) — общая для всех разделов прикладной оптики научная дисциплина, на основании которой производятся количественные измерения энергетических характеристик поля излучения.

В основе фотометрии как науки лежит разработанная А. Гершуном теория светового поля .

На практике положения теории светового поля реализуются инженерной дисциплиной — светотехникой.

Что такое Фотометр<font color="red">и</font>я - определение